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Abstract 7 

 In this study, we present an approach to estimate the extent of large-scale coastal floods caused 8 

by Hurricane Sandy using passive optical and microwave remote sensing data. The approach 9 

estimates the water fraction from coarse-resolution VIIRS and ATMS data through mixed-pixel 10 

linear decomposition. Based on the water fraction difference, using the physical characteristics of 11 

water inundation in a basin, the flood map derived from the coarse-resolution VIIRS and ATMS 12 

measurements was extrapolated to a higher spatial resolution of 30 meters using topographic 13 

information. It is found that flood map derived from VIIRS shows less inundated area than the 14 

FEMA flood map and the ground observations. The bias was mainly caused by the time 15 

difference in observations. This is because VIIRS can only detect flood under clear conditions, 16 

while we can only find some clear sky data around the New York area on Nov. 4th, 2012, when 17 

most flooding water already receded.  Meanwhile, microwave measurements can penetrate 18 

clouds and sense surface water under clear-or-cloudy conditions. We therefore developed a new 19 

method to derive flood maps from passive microwave ATMS observations.  To evaluate the 20 

flood mapping method, the corresponding ground observations and the FEMA storm surge 21 

flooding (SSF) product are used. The results show there was good agreement between our 22 

ATMS and the FEMA SSF flood areas, with a correlation of 0.95. When evaluated against 23 

ground observations from the social-media data, it is found that 95% of the flickr flood reports 24 
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were distributed within the ATMS-derived flood area. Overall, the proposed methodology was 1 

able to produce high-quality and high-resolution flood maps over large-scale coastal areas. 2 

Key Words:  Coastal flood, Hurricane, Water fraction, High-resolution flood mapping, VIIRS, 3 

and ATMS. 4 

 5 

1．Introduction 6 

Hurricane Sandy, the largest Atlantic hurricane on record, devastated portions of the Mid-Atlantic and 7 

Northeastern United States in late October 2012. Preliminary estimates of losses that include business 8 

interruption surpass $50 billion (2012 USD). 9 

Rapid assessment of the spatial extent of large-scale flooding event is highly important 10 

for relief and rescue operations, and satellite remote sensing is eminently appropriate for this task 11 

(Sheng et al. 2001, Sun et al. 2011, 2012). Under clear conditions during the daytime, flood maps 12 

can be derived from optical sensors, such as visible (VIS), near-infrared (NIR) (Sheng et al. 13 

2001, Sun et al. 2011, 2012), and shortwave-infrared (SWIR) observations (Li et al. 2012). 14 

Compared with optical remote sensing instruments, microwave sensors, including active airborne 15 

synthetic aperture radar (SAR) imagery (Battes et al. 2006), and passive microwave instruments 16 

(Sippel et al. 1994, Jin 1999, Tanaka et al. 2003, Zheng et al. 2008) can penetrate through clouds 17 

and sense surface water bodies. Compared with active microwave sensors, passive microwave 18 

instruments can provide observations at higher temporal resolutions; therefore, these data have 19 

great potential for estimating large-scale floods, particularly under cloudy conditions that are 20 

typically associated with floods. However, the coarse spatial resolution of passive microwave 21 

sensors may limit their broad application. 22 
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In this study, flooding due to Hurricane Sandy was derived from the NPP VIIRS 375-m 1 

imager data and microwave ATMS data, and enhanced to a 30-m resolution using the SRTM 2 

DEM data. The results show good agreement with the FEMA flood map and ground 3 

observations.  4 

2. Data Used 5 

 6 

To estimate the coastal flooding due to Sandy, the data used are listed as follows: 7 

1) The NPP VIIRS data (Table 1) were obtained from NOAA’s Comprehensive Large 8 

Array-Data Stewardship Systems (CLASS).  9 

2) The ATMS antenna temperature data records (TDR) were obtained from NOAA’s 10 

CLASS (Weng et al. 2013). Brightness temperatures and satellite zenith angles were 11 

extracted from the ATMS HDF5 files. These data were then re-projected into the WGS84 12 

system and re-sampled to 15km x 15km spatial resolution. The channels shown in Table 2 13 

can be used to observe the earth’s surface. 14 

3) Digital elevation model (DEM) data from Shuttle Radar Topography Mission (SRTM). 15 

4) River basin boundary data, distributed by the US Geological Survey (USGS), were used 16 

to obtain water fraction statistics for high-resolution flood mapping. To construct the 17 

mixed pixels along the coastline, the coastline on the river basin boundary was buffered 18 

toward the ocean. 19 

5) Land cover data, acquired from the National Land Cover Database (NLCD) 2006 of 20 

USGS, are used to obtain pure end-member data and to extract background water 21 

information.  22 

6) Linear hydrographic features (major rivers, streams, and canals) and area hydrographic 23 
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features (major lakes and reservoirs) were used for estimating river density and for 1 

deriving pure land end-member data. 2 

7) Three-meter-resolution Hurricane Sandy SSF products generated from field-verified 3 

High-Water-Marks (HWM) and Storm Surge Sensor data and distributed by the Federal 4 

Emergency Management Agency (FEMA) were used to evaluate the ATMS-derived flood 5 

map. The SSF products were created from the HWMs and storm surge sensor data from 6 

the USGS. The HWMs and surge sensor data are used to interpolate the water surface 7 

elevation; then, the water elevation data are subtracted from the best available DEM to 8 

create a depth grid and surge boundary. 9 

8) Ground-level observations from open-source social media content, namely, geolocated 10 

flickr imagery that reported flooding, as an additional dataset to evaluate the satellite-11 

derived flood map. 12 

3. Methodology 13 
 14 

3.1. Derive Flooding Water Fraction from VIIRS under Clear Conditions 15 

Under clear sky conditions, a decision tree algorithm will be applied to identify flooded 16 

areas (Sun et al. 2011, 2012, Li et al. 2012).  Since flood is land inundated by water, flooded 17 

pixels are usually water mixed with land. As such, only water fraction can represent this mixed 18 

information, so flood map derived from water fraction contains more information than that 19 

derived from water classification (Sun et al. 2011).  Water fraction can be calculated from linear 20 

mixture model and a dynamic nearest neighbor searching (DNNS) method developed by Li et al. 21 

(2012):  22 
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   (1) 1 

By using the characteristic of the VIIRS visible channel I1 (ch1:0.64 μm), near IR channel 2 

I2 (ch2: 0.865 μm) and Shortwave IR (SWIR) channel I3 (ch3: 1.61 μm), the DNNS method can 3 

be used to dynamically search the nearby land and water end members: 4 

 5 

 6 

 7 

(2) 8 

 9 

 Flooding water fraction can be obtained by the difference in water fraction after and before 10 

flood.   11 

3.2. Cloud Shadow Detection  12 

Another critical component of this technique is a  geometric correction method recently 13 

developed by Li et al. (2013a) to remove cloud shadows from water detection results (Li et al. 14 

2013a). This is a critical step in flood mapping, as current techniques that rely on optical satellite 15 

imagery are severely affected by a large portion of cloud shadow pixels that are misclassified as 16 

water. The viability of necessary retrieval methods and new sensor capabilities has been 17 

demonstrated for flood detection using Hurricane Sandy, and the recent flood cases in Alaska 18 

and Colorado as primary operational test scenarios. The flowchart for deriving water fraction and 19 

flood from VIIRS is described in Figure 1. 20 

3.3. Inundation Model to Derive High Resolution Flood Maps 21 

According to water’s hydrodynamic properties, when flooding occurs, inundated areas are 22 

affected sequentially from lowest to the highest point in elevation. If the topography is not very 23 
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steep around the water bodies, the higher the water level, the larger the inundated area. This 1 

inundation mechanism can be expressed as: 2 

A = ∫ 𝑓(ℎ)𝑑ℎ                 
max _ℎ

min _ℎ
                          (3) 3 

 4 

where, A is the total water area between the minimal surface elevation, min_ℎ , and maximal 5 

inundated surface elevation, max_ℎ; and 𝑓(ℎ) is the increment of water area with the change of 6 

surface elevation ℎ. Equation (3) indicates the relationship between inundated area and surface 7 

elevation. Because both the minimal surface elevation, min_ℎ, and the increment function of 8 

water area in a specific region, 𝑓(ℎ),can be derived from the digital elevation model (DEM), the 9 

maximal inundated surface elevation, max _ℎ, decides the total water area (Li et al. 2013b). 10 

Consequently, the maximal inundated surface elevation, max_ℎ, can also be calculated if the 11 

total water area A is known.  12 

Since optical satellite data, such as VIIRS, can only map the land surface under clear-sky 13 

conditions when major locations affected by Sandy can only be detected four days after the 14 

hurricane’s passing (November 4, 2012). As shown in Figure 4, by that time, flooding conditions 15 

had already receded in most affected regions.  The peak floods due to Hurricane Sandy were 16 

under cloudy conditions. Accordingly, we developed a new algorithm to derive flood maps from 17 

passive microwave data; namely, the ATMS sensor on board the Suomi-NPP, which can 18 

penetrate through clouds to observe the surface. 19 

3.4. Derive Flooding Water Fraction from ATMS under All Weather Conditions  20 

3.4.1. Precipitating cloud detection  21 

Despite its overall resilience in cloudy conditions, passive microwave signals can still be 22 

affected by clouds (Cho and Nishiura 2010). In particular, higher frequency channels cannot 23 

penetrate precipitating clouds. Before extracting the surface information, precipitating clouds 24 
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should be detected and masked.  Precipitating clouds can be defined by comparing the brightness 1 

temperature at 89 GHz versus 22 GHz, as the former has substantially lower values (Ferraro et 2 

al. 1998). Accordingly, we defined a pixel in the ATMS imagery as a cloud-contaminated pixel 3 

if it met the following condition: 4 

BT
16

-BT
1
<T

RAIN
                     

 
(4)

  
5 

where BT16 and BT1 are the brightness temperatures of channels 16 and 1, respectively, and 6 

TRAIN (10.0) is a threshold value to distinguish precipitation areas from other objects. 7 

3.4.2. Satellite zenith angle limitation 8 

Pixels with large satellite zenith angles have a lower spatial resolution than those near nadir. 9 

Accordingly, we chose the pixels with smaller angles to extract related information by removing 10 

pixels with satellite zenith angle greater than 50º.  Satellite zenith angle data are available in 11 

ATMS’s HDF5 file, which provides such information for each ATMS pixel. 12 

3.4.3. Water fraction calculation method 13 

Water body detection and area calculations are key steps for flood estimations. Channels 3 14 

and 4 of the ATMS data have longer wavelengths and better penetrate clouds than channel 16. 15 

Furthermore, these two channels are similarly affected by the atmosphere due to their similar 16 

frequencies. Following previous researchers’ use of the polarization difference of 37 GHz 17 

(Sippel et al. 1994, Choudhury 1989, Sippel et al. 1998), in this study, the brightness temperature 18 

difference (ΔT(4-3)obs) between channels 4 and 3 was used to identify water and land. To test the 19 

sensitivity of ΔT(4-3)obs to water and land, land and water samples were selected from the ATMS 20 

data on October 16, 17, 21, 22, 26, 27 and November 1 according to the land cover.  21 
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The spatial resolution of ATMS data is 15 km. At this coarse resolution, the land surface is 1 

generally comprised by mixed terrain of water and land. ATMS pixels consist of a combination 2 

of different microwave signals generated by the water and the land surface fractions, and can be 3 

represented as following: 4 

 5 

(4-3) (4-3) (4-3)obs wat wat lan lanT f T f T              (5)         6 

 7 

                                     1 wat lanf f 

                                 

 (6) 8 

where, △T(4-3)obs is the brightness temperature difference of ATMS channels 3 and 4. △T(4-3)wat 9 

and △T(4-3)lan are the brightness temperature difference of channels 3 and 4 for water and land, 10 

respectively. fwat and flan represent the fractions of water and land, respectively. According to 11 

equations 5 and 6, we can get: 12 

lanwatwatwatobs TfTfT )34()34()34( )1(  
     (7) 13 

lanlanwatwatobs TTTfT )34()34()34()34( )(       (7)’ 14 

From equation 7, water fraction fwat can be derived from the following equation: 15 

 16 
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(8) 17 

Two end elements need to be calibrated: △T(4-3)lan and △T(4-3)wat. The calibration of the △T(4-3)wat 18 

is rather straightforward, as it can be derived by analyzing the brightness temperatures measured 19 

over the lakes or ocean. △T(4-3)lan is calibrated over some selected pixels, which are chosen based 20 

on the ATMS channel characters, DEM data, and river basin boundary data. The calibration of 21 
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land pixels is more complicated, because land end members are related to soil moisture, 1 

vegetation, and soil types, and other physiognomical factors. 2 

To find the pure end-member more accurately, we built pure land sample regions according 3 

to the land cover data and river density information. We selected land sample pixels with both 4 

low river density and similar land cover types to the coastland. Ocean pixels near the coastline 5 

were selected as water sample regions.  The flowchart for deriving water fraction from ATMS is 6 

shown in Figure 2. 7 

4. Results 8 

4.1. Derive high resolution flood map from VIIRS 9 

Figure 3 (left) shows a false-color image of the VIIRS instrument over the New York 10 

metropolitan area, while Figure 3 (upper) shows the derived water fraction distribution in the 11 

same area on Nov. 04, 2012.  12 

With the water detection result, floodplains can be determined by subtracting water extent 13 

before flood. For operational products, we can use water reference map from MODIS Water 14 

Mask Product (MOD44W) (Carroll et al., 2009) or generate a dynamic reference water map from 15 

a composite of water identification map in all clear days during previous month.  However, with 16 

the original spatial resolution 375 m of VIIRS, as shown in Figure 3, the flooded area in small 17 

regions, like New York, during Hurricane Sandy period, can’t be detected.  By applying an 18 

inundation model recently developed by Li et al. (2013a) and ingesting DEM data from the 19 

SRTM, flood maps derived from VIIRS can be upgraded to 30 m resolution. 20 

Figure 4 shows a flood map around the New York metropolitan area derived from VIIRS 21 

and SRTM 30-m DEM data on Nov. 04, 2012, when only some clear sky data around the New 22 

York area can be found. Compared with flooding zone maps from the FEMA and evacuation 23 
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estimates during Hurricane Sandy, the VIIRS 30-m flood map on Nov. 4th, 2012 shows 1 

consistent inundated locations. Nevertheless, the flood map derived from VIIRS shows less 2 

inundated area than the FEMA flood map and the ground observations. This is because most 3 

flooding water due to Sandy already receded on Nov. 4th, 2012.   4 

4.2. Derive high resolution flood map from ATMS  5 

Since microwave instruments, like Radar and ATMS, can penetrate through clouds to 6 

observe the Earth surface, but the Radar data is usually very expensive, we therefore developed a 7 

new method to derive flood maps from passive microwave ATMS observations.  8 

The water fraction of each ATMS pixel was estimated in accordance with the principle of 9 

linear decomposition of mixed pixels. The land and water samples regions generated by river 10 

density and land cover data, the relationship of channels 3, 4 and 16, neighborhood pixels 11 

searching, and the difference of channels 4 and 3 of ATMS were comprehensively taken into 12 

account to dynamically decide the water and land endmembers.  13 

Figure 5 shows the resulting water fraction maps derived from the ATMS before and after 14 

Hurricane Sandy. With the water detection result at the ATMS coarse resolution (15km), 15 

floodplains can be determined by subtracting water extent before flood.  The basin-scale water 16 

fraction differences between before and after the flood were calculated to derive flood map, and 17 

to reduce the affection of soil moisture and vegetation, avoiding the pixel-to-pixel errors. Figure 18 

3 (c) demonstrates the flood map derived from the ATMS.  19 

However, the spatial resolution from passive microwave sensor is usually very coarse (e.g. 20 

15 km for the ATMS). The primary limitation of ATMS data for flood detection is its coarse 21 

spatial resolution (15 km2).  It is difficult to obtain detailed information about the flood 22 

distribution from the original water fraction results because of the coarse resolution. According 23 
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to the characters of water distribution in a basin, combining with high resolution DEM data, 1 

high-resolution flood mapping can be obtained using the inundation model recently developed by 2 

Li et al. (2013c).  By applying this inundation model and the DEM derived from the 30m SRTM 3 

observations, water fraction and flood map derived from the ATMS can be enhanced to fine 30 4 

m resolution.  Figure 6 (upper) shows the flood map at 30 m resolution derived from the SRTM 5 

DEM data with the inundation model. 6 

4.3. Evaluations 7 

4.3.1. Comparison to a similar flood map produced by FEMA 8 

Compared with the flooding map derived from the VIIRS as shown in Figure 4, the ATMS 9 

30-m flood map on Nov. 1st, 2012 shows consistent inundated locations with the flood zone 10 

maps from FEMA (Figure 4 Lower).  We further make a quantitative comparison to the SSF 11 

products distributed by FEMA (http://fema.maps.arcgis.com/home/index.html) during the 12 

Hurricane Sandy period. The SSF product, i.e., the flood information distributed by FEMA 13 

during Hurricane Sandy, included the states of NJ (New Jersey), NY (New York), and CT 14 

(Connecticut) (Figure 6). For quantitative evaluation, the SSF product was re-sampled from 3 m 15 

to the same 30-m resolution  and overlapped with our ATMS-derived flood map.  The flood map 16 

derived from the ATMS and DEM data shows even more inundated area than the FEMA SSF 17 

product.  Further quantitative assessment indicates a good agreement between the ATMS-derived 18 

and the FEMA SSF flood map (Figure 6) with correlation 0.95.  One of the main sources for the 19 

remaining inconsistency or errors may be due to spatial resolution differences of the various 20 

datasets.  Although we re-sampled all the datasets to the same 30-m spatial resolution, slight 21 

displacements of ATMS would cause a substantial shift in our ATMS-derived product, as it is 22 

compared with the fine 3-meter resolution of the SSF product.  Differences in the scope between 23 

ATMS-derived flood map and the SSF products can also be reasonably expected, because inland 24 
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water inundation caused by hurricane-associated precipitation was not connected with the 1 

coastline or ocean. This type of flooding was reflected by microwave ATMS signal, but was not 2 

included in the SSF products; thus, differences were observed when the two datasets were 3 

compared.  4 

 5 

4.3.2. Evaluation against ground-level observations from social-media flood reports 6 

In a next step, we compared our map to crowdsourced data from social media. The emergence 7 

of social media has provided another avenue for event reporting, with citizens contributing real-8 

time information about breaking news. The popularity of platforms such as Twitter and YouTube 9 

and the substantial amount of content that is communicated through them are making social 10 

media a powerful open-source addition to authoritative datasets (Stefanidis et al. 2013). The 11 

information communicated through such feeds is often geolocated, and the analysis of this 12 

geospatial content may lead to the identification of patterns that can be correlated to physical 13 

events.  14 

For this particular application, we focused on flickr imagery. We collected all geolocated 15 

flickr imagery that reported flooding in our study area within one week after the hurricane, and 16 

we compared these data to our ATMS-derived flood map. We collected flickr data through 17 

flickr’s publicly accessible application programming interface (API). The flickr data are images 18 

uploaded to the social media website over a week-long period starting on October 30, 2012, that 19 

explicitly mention the words ‘flood’ and ‘Sandy’ in their descriptions. A total of 1,059 20 

geolocated images were obtained. In Figure 7, we see the spatial coincidence between these two 21 

datasets.  It is found that 95% of the flickr flood reports were distributed within the ATMS-22 

derived flood area. We proceeded with the flickr data in this case, rather than twitter, because 23 
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twitter traffic was saturated with references to flooding even from locations that were not 1 

affected by it. The flickr imagery was reasonably assumed to represent locations inside or 2 

adjacent to the flood zone (see Figure 7). The significance of this finding is twofold. First, it 3 

offers a further argument for the quality of the ATMS-derived flood map. Second, one could 4 

argue, more importantly, that this study presents a comparison of the spatial distribution of flickr 5 

imagery that report a flood event relative to the event itself at a large scale. The ground-level 6 

imagery that we used in this study were not contributed as a response to a specific request for 7 

data, but rather it was information contributed directly to flickr by the general public as part of its 8 

normal social media activities. Therefore, it presents an unbiased representative example of 9 

social media content as it relates to flooding events. Accordingly, we argue that our results offer 10 

a first real-data-based, large-scale-study argument in support of the high potential of using 11 

crowdsourced information (flickr, here).  12 

4. Summary and Discussions  13 

The high temporal resolution and large coverage of coarse- to moderate-resolution satellite 14 

imagery, such as VIIRS and ATMS onboard the NPP and future JPSS, are very advantageous for 15 

flood monitoring, but their coarse spatial resolution limits their wider application. Overcoming 16 

this limitation is an interesting scientific challenge with substantial application potential.  17 

In this study, VIIRS observations are used to estimate floods induced by Hurricane Sandy 18 

along a coastline and New York area in late October and early November of 2012.  But with the 19 

original resolutions, floods in small region cannot be identified, we therefore applied a recently 20 

developed inundation model to upscale VIIRS 375-m water fraction and flood maps to 30-m 21 

resolution by using the SRTM 30-m DEM data. It is found that flood map derived from VIIRS 22 

data shows less inundated area than the FEMA flood map and the ground observations. This is 23 
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because optical sensor can only observe the Earth surface under clear-sky conditions, while clear 1 

data can only be found four days after the hurricane’s passing on November 4, 2012, when major 2 

floods due to Hurricane Sandy already receded. The peak floods were associated with cloudy 3 

conditions.  Since microwave instruments, like Radar and ATMS, can penetrate through clouds 4 

to watch the Earth surface, but the Radar data is usually very expensive, we therefore developed 5 

a new method to derive flood maps from passive microwave ATMS observations. The flood map 6 

derived from the ATMS is also improved to 30-m spatial resolution by applying the same 7 

inundation model developed by Li et al. (2013) and the SRTM 30-m DEM data. 8 

To evaluate the flood mapping methodology presented in this study, we used 9 

corresponding datasets in the form of storm-tide site and high-water-mark data and the FEMA 3-10 

m-resolution Hurricane Sandy SSF products. Our assessment shows high consistency between 11 

our ATMS-derived 30-m flood maps and the validation data. Specifically, 88% of the storm-tide 12 

and high-water-mark sites were located within the ATMS-mapped flood area. There was also a 13 

good agreement between ATMS- and FEMA flooded areas, with an accuracy of 88% and a 14 

correlation of 0.94. When evaluated against round level observation from social-media flood 15 

reports, 95% of the flickr flood reports were similarly contained within our flood map.  The 16 

remaining errors may be attributed to the soil moisture variations before and after the hurricane. 17 

Overall, the proposed methodology was able to produce high-quality and high-resolution flood 18 

map over large scale coastal areas.  19 

Passive microwave observation is found useful and practical for storm-surge flood 20 

estimations, particularly for rainy and cloudy weather.  Nevertheless, some key discussions that 21 

result from our study are as follows: 1) Because of the limited spatial resolution of the ATMS 22 

data, pure land or water pixels were very difficult to identify. Accordingly, prior knowledge of 23 
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land samples and water samples based on land cover and river density can improve end-member 1 

accuracy. 2) Although we re-sampled the ATMS-derived flood map and FEMA SSF products to 2 

the same resolution for comparison, the spatial resolution differences of the various datasets may 3 

result in some inconsistencies or errors.  3) In our study, the ATMS data with small satellite 4 

zenith angles and daylight orbits were used for the flood estimation. A logical extension of this 5 

work would be to study the extent to which the satellite zenith angle and azimuth angle, solar 6 

zenith angle and azimuth angle affect the passive microwave signal. 4) Although passive 7 

microwave data can penetrate clouds, the resulting data, particularly from higher frequency 8 

channels, are still affected by precipitating clouds. Eliminating the effects of such clouds is 9 

another future research direction that emerges from this work. 5) The pixels’ soil moisture 10 

conditions may be different before and after flooding. The extent to which the soil moisture 11 

difference between pre- and post-flooding affects the water fraction difference may also need 12 

further investigations in the future. 6) It also needs a note that this approach may only be applied 13 

to large scale floods, as we performed many tests, the methodology may not work well for small 14 

scale floods.  15 
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Table 1. NPP/VIIRS Imager multi-spectral channels used to observe surface water 1 

Band No. Central Wavelength 

(μm) 

Wavelength Range 

(µm) 

Horizontal Sample 

Interval (km) 

I1 0.640 0.600 - 0.680 0.371 x 0.387 

I2 0.865 0.846 – 0.885  0.371 x 0.387 

I3 1.61 1.580 – 1.640 0.371 x 0.387 

I5 11.45 10.500 – 12.400 0.371 x 0.387 

 2 

Table 2. Characteristics of ATMS channels used to observe earth surface 3 

Cannel 
Center frequency 

 (GHz) 

Beam width 

(o) 

Quasi 

polarization 

Characterization 

at nadir  

1 23.80 5.2 QV Surface 

2 31.40 5.2 QV Surface 

3 50.30 2.2 QH Surface 

4 51.76 2.2 QH Surface 

16 88.20 2.2 QV Surface 

 4 

5 
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List of Figures 1 

Figure 1.  Flow chart for deriving flood from VIIRS data 2 

Figure 2. Flowchart of water fraction estimation from ATMS data. 3 

Figure 3. (Upper) VIIRS false-color image (VIIRS 3, 2, 1) at 17:17 (GMT) on Nov. 04, 2012. 4 

Dark blue and black correspond to water bodies. (Lower) VIIRS-derived water fraction for the 5 

same period using the Li et al. (2013a) algorithm. 6 

Figure 4. Flood map at 30-m resolution derived from VIIRS and SRTM in the New York 7 

metropolitan area on Nov. 04, 2012 (Upper) compared with a flooding area map from FEMA 8 

over parts of lower Manhattan, the Upper East Side, Red Hook, and Greenpoint (Lower). 9 

Figure 5. Water fraction maps before (left) and after (middle) Hurricane Sandy and their 10 

difference map (right) 11 

Figure 6.   30-meter resolution flood map generated from the ATMS and DEM on Nov. 1st, 2012, 12 

overlapped and compared with the FEMA SSF flood product.  13 

Figiure 7. Flickr images reporting flooding (yellow dots) overlaid on the ATMS-derived flood 14 

map in the vicinity of New York City and its boroughs.  15 

  16 
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 1 

Figure 1.  Flow chart for deriving flood from VIIRS data 2 

  3 
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 1 

Figure 2. Flowchart of water fraction estimation from ATMS data. 2 
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 1 

 2 

Figure 3. (Upper) VIIRS false-color image (VIIRS 3, 2, 1) at 17:17 (GMT) on Nov. 04, 2012. 3 

Dark blue and black correspond to water bodies. (Lower) VIIRS-derived water fraction for the 4 

same period using the Li et al. (2013a) algorithm. 5 

 6 

 7 

 8 
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 1 

Figure 4. Flood map at 30-m resolution derived from VIIRS and SRTM in the New York 2 

metropolitan area on Nov. 04, 2012 (Upper) compared with a flooding area map from FEMA 3 

over parts of lower Manhattan, the Upper East Side, Red Hook, and Greenpoint (Lower). 4 

. 5 
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 1 

Figure 5. Water fraction maps before (left) and after (middle) Hurricane Sandy and their 2 

difference map (right) 3 

 4 

 5 

 6 

 7 

 8 

 9 
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 1 

Figure 6.   30-meter resolution flood map generated from the ATMS and DEM on Nov. 1st, 2012, 2 

overlapped and compared with the FEMA SSF flood product.  3 

 4 
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 1 

Figiure 7. Flickr images reporting flooding (yellow dots) overlaid on the ATMS-derived flood 2 

map in the vicinity of New York City and its boroughs.  3 

 4 


